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A non-Hermitian operator that is related to its adjoint through a similarity transformation is defined as a
pseudo-Hermitian operator. We study the level statistics of a pseudo-Hermitian Dicke Hamiltonian that under-
goes quantum phase transition �QPT�. We find that the level-spacing distribution of this Hamiltonian near the
integrable limit is close to Poisson distribution, while it is Wigner distribution for the ranges of the parameters
for which the Hamiltonian is nonintegrable. We show that the assertion in the context of the standard Dicke
model that QPT is a precursor to a change in the level statistics is not valid in general.
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The study on statistics of energy levels in quantum many-
body systems has a long history �1,2�. The statistical analysis
based on the random matrix theory �RMT� has been applied
to characterize quantum chaos and to investigate the integra-
bility of a quantum system. In particular, it has been conjec-
tured �3� that the level-spacing distribution of an integrable
Hermitian Hamiltonian should be described by the Poisson
distribution: PP�s�=exp�−s�. On the other hand, if the system
is nonintegrable, the level-spacing distribution of the Hermit-
ian Hamiltonian should be given by the Wigner distribution,
i.e., the Wigner surmise for the Gaussian orthogonal en-
semble �GOE�: PW�s�= ��s /2�exp�−�s2 /4�. Although there
is no rigorous proof of the Bohigas-Giannoni-Schimdt �BGS�
conjecture �3� for quantum systems, it has been numerically
confirmed for a variety of many-body Hamiltonian �2� and
also theoretically in the semiclassical limit �4�.

The RMT without the constraint of Hermiticity was intro-
duced by Ginibre �5� and, currently, is an active field of
research �6�. The non-Hermitian RMT exhibits generic sta-
tistical behavior of quantized dissipative systems. The inte-
grable case corresponds to the Poisson process on the plane,
while a cubic repulsion is a signature of quantum chaotic
scattering �6�. An interesting result due to Ginibre �5� is that
the probability density function for the eigenvalues of real
Gaussian random nonsymmetric matrices with all the eigen-
values being real is identical to the GOE and, consequently,
the level-spacing distribution is given by PW�s�. If all the
eigenvalues of a real nonsymmetric matrix M are real, it can
be shown that the same matrix can be mapped to its trans-
pose through a similarity transformation. In particular, MT

= �XXT�−1M�XXT�, where the real matrix X diagonalizes M
with entirely real eigenvalues E, i.e., M =XEX−1. This shows
that Ginibre’s ensemble of real nonsymmetric matrices be-
long to the class of operators known as pseudo-Hermitian
operator, i.e., an operator that is related to its adjoint through
a similarity transformation.

The study on pseudo-Hermitian operators has received
considerable attention recently in connection with the pio-
neering work of Bender and Boettcher �7�, showing that non-
Hermitian operators with unbroken PT symmetry admit en-
tirely real spectra. This has opened up several new directions
�8–12� in the study of pseudo-Hermitian operators. One of
the significant developments is the construction of pseudo-
Hermitian RMT with pseudounitary symmetry �13�. The de-
gree of level repulsion is different from that of previously
known Gaussian orthogonal, unitary, and symplectic en-
sembles and it seems to point out a new universality class.
Moreover, unlike the Ginibre ensembles �except for the ex-
ceptional case discussed above�, non-Hermitian RMT with
pseudounitary symmetry describes nondissipative systems.

In spite of all the above developments, a criterion to char-
acterize quantum chaos and to investigate the integrability of
a pseudo-Hermitian operator using the level statistics based
on RMT is still lacking. Pseudo-Hermitian operators with
entirely real spectra can be shown to be Hermitian with re-
spect to some modified inner product in the Hilbert space �8�.
The effect of the modified inner product in the Hilbert space
is to have a modified symplectic structure for the correspond-
ing classical system. It may be noted here that a fixed modi-
fied inner product in the Hilbert space or the corresponding
symplectic structure is not universal for pseudo-Hermitian
systems. It varies from one system to another and, in general,
it is a difficult problem to identify the proper inner product
for a given pseudo-Hermitian system admitting an entirely
real spectrum. It is thus not clear a priori whether the stan-
dard semiclassical analysis in support of the BGS conjecture
for quantum systems with a standard inner product in the
Hilbert space will remain unchanged for generic pseudo-
Hermitian systems or not. In the absence of any theoretical
support for the validity of the BGS conjecture for pseudo-
Hermitian systems, it may be worth looking for numerical
evidences.

The purpose of this paper is to present numerical evidence
to show that the level-spacing distribution of a nonintegrable
pseudo-Hermitian Dicke Hamiltonian �DH� with an entirely
real spectrum is described by the Wigner distribution. On the
other hand, it approaches to the Poisson distribution for the
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parameters of the model close to the integrable limit.
We consider a pseudo-Hermitian DH that has been shown

recently to undergo QPT �12�,

H = �a†a + �0Jz +
�

�2j
ei�1J−a† +

�

�2j
e−i�1J+a +

�

�2j
ei�2J−a

+
�

�2j
e−i�2J+a†, �1�

where �, �0, �, �, �, �, �1, and �2 are real parameters and j
is the total spin-angular momentum. The operators a, a† are
the standard bosonic annihilation-creation operators and Jz,
J	 are the generators of the SU�2� algebra,

�a,a†� = 1,

�J+,J−� = 2Jz, �Jz,J	� = 	 J	. �2�

The Hamiltonian H commutes with the parity operator 
,


 = ei�N̂, N̂ = a†a + Jz + j . �3�

The eigenstates of H have definite parity depending on

whether the eigenvalues of the operator N̂ are odd or even.
The Hamiltonian �1� reduces to the standard DH for �1=�2
=0 and �=�=�=�. The DH has been studied extensively
from the viewpoint of QPT �14–16�, level-statistics �16�,
quantum entanglement �17,18�, exact solvability �19�, and
two-dimensional semiconductor physics �20�.

The non-Hermitian Hamiltonian H can be mapped to a
Hermitian Hamiltonian H=�H�−1 through a similarity trans-
formation when the following relation is satisfied �12�,

�� − �� = 0. �4�

The operator � and H have the following forms �12�:

� = exp�1

4
ln���

��
��Jz + j�	,

�

�
� 0,

�

�
� 0,

H = �a†a + �0Jz +���

2j
�ei�1J−a† + e−i�1J+a�

+���

2j
�ei�2J−a + e−i�2J+a†� . �5�

The Hamiltonian H that is non-Hermitian under the Dirac-
Hermiticity condition becomes Hermitian with respect to the
modified inner product defined in the Hilbert space as,


u ,v��
+

ª 
u ,
+v�, where the metric 
+ª�2. In particular,


u�Hv� � 
Hu�v�, 

u�Hv��
+
= 

Hu�v��
+

. �6�

Thus, with the modified inner product, the results of a Her-
mitian Hamiltonian follow automatically. Note that 
u �Hv�
= 
Hu �v�. We refer to Ref. �12� for further details.

In this system, when j is finite, the parity 
 is a good
quantum number. Two states with different parity do not in-
teract with each other. In other words, we can concentrate on
the states with either positive or negative 
. Here, we con-
sider the positive-parity states.

The level-spacing distributions are given by the probabil-

ity function P�s� of nearest-neighbor spacings si=xi+1−xi,
where xi are unfolded eigenvalues. In order to characterize
the level-spacing distribution, we employ the quantity,


 
 � �0
s0�P�s� − PW�s��ds

�0
s0�PP�s� − PW�s��ds

� , �7�

where s0=0.472 9. . . is the intersection point of PP�s� and
PW�s�. We have 
=1 when P�s�= PP�s�, and 
=0 when
P�s�= PW�s�.

In the following, we set �=�0=1 and �1=�2=0 for con-
venience. A further choice of �= �

n essentially fixes � as �
= �

n due to the pseudo-Hermiticity condition �4�, where
n��−1� is a real number. With this parametrization, the
Hamiltonian H can be rewritten as

H = a†a + Jz +
1

�2j
��J−a† + �J+a +

�

n
J−a +

�

n
J+a†� . �8�

The equivalent Hermitian Hamiltonian H has the following
form:

H = a†a + Jz +���

2j
�J−a† + J+a +

1

n
�J−a + J+a†�	 . �9�

The total spin-angular momentum j should be large enough
to obtain proper results of level statistics. If j is very small
�j�1� because of a kind of finite-size effects, level statistics
shows no universal ensembles �16�. In our numerical calcu-
lation, j=10 unless specifically mentioned.

Figure 1 exhibits the phase diagram of 
 for H in Eq. �8�
with n=1. At the critical line ��=1 /4, 
 rapidly changes.
For ���1 /4, level statistics is almost Poissonian as seen in
Fig. 2�a� �21�. As �� increases, P�s� changes from the Pois-
son to Wigner distributions. It gives an intermediate distribu-
tion, e.g., Fig. 2�b�. For ���1 /4, level-spacing distribution
is almost given by the Wigner distribution, as shown in Fig.
2�c�. However, as �� increases further, 
 gradually in-
creases. In other words, level statistics gradually changes
from the Wigner distribution to Poissonian one again as ��
becomes very large. Figure 2�d� is an example of an inter-
mediate distribution for large ��. The behavior of 
 along
the line �=� in Fig. 1 corresponds to that of Ref. �16�.

FIG. 1. �Color online� Phase diagram of 
, which is defined by
Eq. �7�, in a special case where �=� and �=�. The solid curve
corresponds to the critical line ��=1 /4. Solid circles correspond to
the level-spacing distributions in Fig. 2.
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The Hamiltonian H in Eq. �9� corresponds to the standard
DH for n=1 and has been studied in some detail in Ref. �16�.
Based on the results of �16� and the numerical findings for H
as described above, we suggest the following:

�i� The criteria to distinguish between integrable and non-
integrable phases of a Hermitian Hamiltonian are valid also
for a pseudo-Hermitian Hamiltonian. The quantum Hamil-
tonian H and H have the identical eigenvalues since they are
related to each other through a similarity transformation.
Thus, both H and H show similar changes in the level-
spacing distributions as a function of ��.

�ii� The onset of quantum chaos in a pseudo-Hermitian
Hamiltonian is manifested by a change in the level statistics
from Poissonian to Wigner distribution. It is known that the
semiclassical Hermitian Hamiltonian corresponding to H
shows chaotic behavior for ���

1
4 and regular periodic or-

bits are obtained for ���
1
4 �16�. It is also the case for the

Hamiltonian H in the semiclassical limit. In fact, a non-
Hermitian Hamiltonian and its equivalent Hermitian Hamil-
tonian describe the same physics in the classical limit within
the formalism of pseudo-Hermitian quantum physics and the
correspondence principle �8�.

We now present numerical results for other values of n.
Figures 3�a� and 3�b� are phase diagrams of 
 for n= 1

2 and
n=2, respectively. Changes in level statistics appear around
the critical line determined by ��= n2

�n+1�2 for both the cases,
i.e., the physical picture is identical to the case of n=1. How-
ever, the change of 
 around the critical line is small in Figs.
3�c� and 3�d�, which exhibit phase diagrams of 
 for n= 1

3
and n=3, respectively. In fact, level statistics does not show
clear Wigner behavior for ���

n2

�n+1�2 with n= 1
3 and n=3.

In order to see the change of 
 clearly, we depict 
 as a
function of n for ��=1 in Fig. 3�e�, where the curve of 
 for
j=10 is compared with that for j=30. The nonzero 
 behav-
ior for n�2 and n�

1
2 in Fig. 3�e� indicates that Poisson

behavior continues beyond the critical line in the phase dia-
gram of 
 for those regimes of n. The behavior is a mani-
festation of the fact that the system becomes close to the

integrable limit, if �n��1 or �n��1. One plausible explana-
tion to understand the origin of the precise critical values of
n �i.e., 1

2 and 2� may lie in the nonapplicability of perturba-
tion techniques by treating either the counter-rotating �for 1
�n�2� or the rotating terms �for 1�n�

1
2 � as perturbation.

A comment is in order at this point. The pseudo-
Hermitian Dicke model is known to undergo QPT with the
critical line determined by the equation ��= n2

�n+1�2 �12�. We
suggest that the value of 
, which characterizes the level
statistics, is a possible measure to estimate the onset of the
QPT not only for the Hermitian Hamiltonian H, but, also for
the quasi-Hermitian Hamiltonian H. However, the usual as-
sertion �16� within the context of the standard Dicke model
that QPT is a precursor to a change in the level statistics is
not valid in general for the pseudo-Hermitian Dicke model,
which has a larger parameter space. According to the rel-
evant assertion in Ref. �16�, level statistics is given by the
Wigner distribution for ���

n2

�n+1�2 . For any positive n, the
inequality is satisfied when ��=1. Therefore, if the assertion
was always valid, 
 would be always zero �or very small� for
n�0, which is certainly not the case for n�2 and n�

1
2 in
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FIG. 2. Level-spacing distributions for the Hamiltonian �8� with
n=1. �a� Almost Poisson distribution at �=�=0.1 and �=�=0.2,
�b� intermediate distribution at �=�=0.5 and �=�=0.3, �c� Wigner
distribution at �=�=0.5 and �=�=0.7, and �d� deformed Wigner
distribution at �=�=4 and �=�=4.5.

(e) α =1.25, β = 0.8
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FIG. 3. �Color online� Phase diagram of 
, which is defined by
Eq. �7� for �=� /n and �=� /n; �a� n=1 /2, �b� n=2, �c� n=1 /3, and
�d� n=3. The solid curve in each panel is given by ��=n2 / �n
+1�2. �e� Dependence of 
 plotted against n for �=1.25 and �
=0.8. The parameter combination is shown in �a�–�d� by the points
�� �.

LEVEL STATISTICS OF A PSEUDO-HERMITIAN DICKE… PHYSICAL REVIEW E 80, 026213 �2009�

026213-3



Fig. 3�e�. The assertion is valid for the pseudo-Hermitian
Dicke model for 1

2 �n�2 of which the standard Dicke
model corresponding to n=1 appears as a special case.

We conclude with the following:
�i� Based on our numerical results, we conjecture that the

level-spacing distribution comes close to the Poisson distri-
bution PP�s� as the system approaches the integrable limit,
while for the nonintegrable pseudo-Hermitian Hamiltonian it
should be described by the Wigner distribution PW�s�.

�ii� We have also shown that the assertion �16� that QPT is

a precursor to a change in the level statistics in the standard
Dicke model is not valid in general for the pseudo-Hermitian
Dicke model, which has a larger parameter space. The asser-
tion holds true for the pseudo-Hermitian Dicke model only
for a limited range of the parameter space.
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